Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.727
Filtrar
1.
Aging Med (Milton) ; 7(2): 189-201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38725692

RESUMO

Objectives: The aim of this study was to investigate the retinal morpho-functional characteristics of patients with neovascular wet age-related macular degeneration (nAMD) treated with intravitreal injection (IV) of aflibercept (AFL). Methods: The study was conducted on 35 patients previously diagnosed with type 1 nAMD who received a fixed-dosing regimen of aflibercept injections over 12 months. The goal was to assess trends in visual abilities over time by measuring visual acuity (VA), contrast sensitivity (CS), visual evoked potentials (VEPs), and spectral domain-optical coherence tomography (SD-OCT). The same psychophysical, electro-functional, and morphological tests administered at baseline (T0) were repeated 4 to 8 weeks after the last aflibercept injection (Tn), resulting in a total of six examinations. Results: At Tn, all subjects exhibited improved VA for both far and near distances compared to values detected at T0. Similarly, VEP amplitude and latency values at Tn showed a greater P100 improvement than those observed at T0. Additionally, the CS examination at Tn demonstrated improvement, particularly at high spatial stimulation frequencies. The Tn SD-OCT results highlighted a reduction in macular thickness compared to T0 values. Conclusions: This exploratory research indicates that intravitreal injections of AFL, following a fixed-dosing regimen, represent a valuable therapeutic approach for enhancing visual performance. This conclusion is supported by comprehensive statistical analysis of psychophysical, electro-functional, and morphological examinations within the same group of patients with nAMD, as demonstrated for the first time.

2.
Clin Neurophysiol ; 163: 143-151, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38744104

RESUMO

OBJECTIVE: Temporally extended signal space separation (tSSS) is a powerful method for artifact suppression in magnetoencephalography (MEG). Because tSSS first separates MEG signals coming from inside and outside a certain sphere, definition of the sphere origin is important. For this study, we explored the influence of origin choice on tSSS performance in spontaneous and evoked activity from epilepsy patients. METHODS: Interictal epileptiform discharges (IEDs) and somatosensory evoked fields (SEFs) were processed with two tSSSs: one with the default origin of (0, 0, 40 mm) in the head coordinate, and the other with an individual origin estimated using each patient's anatomical magnetic resonance imaging (MRI). Equivalent current dipoles (ECDs) were calculated for the data. The ECD location and quality of estimation were compared across conditions. RESULTS: MEG data from 21 patients revealed marginal differences in ECD location, but the estimation quality inferred from goodness of fit (GOF) and confidence volume (CV) was better for the tSSS with individual origins. This choice affected IEDs more than it affected SEFs. CONCLUSIONS: Individual sphere model resulted in better GOF and CV. SIGNIFICANCE: Application of tSSS using an individual origin would be more desirable when available. This parameter might influence spontaneous activity more strongly.

4.
J Neurosci Methods ; : 110153, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710234

RESUMO

Human brain connectivity can be mapped by single pulse electrical stimulation during intracranial EEG measurements. The raw cortico-cortical evoked potentials (CCEP) are often contaminated by noise. Common average referencing (CAR) removes common noise and preserves response shapes but can introduce bias from responsive channels. We address this issue with an adjusted, adaptive CAR algorithm termed "CAR by Least Anticorrelation (CARLA)". CARLA was tested on simulated CCEP data and real CCEP data collected from four human participants. In CARLA, the channels are ordered by increasing mean cross-trial covariance, and iteratively added to the common average until anticorrelation between any single channel and all re-referenced channels reaches a minimum, as a measure of shared noise. We simulated CCEP data with true responses in 0 to 45 of 50 total channels. We quantified CARLA's error and found that it erroneously included 0 (median) truly responsive channels in the common average with ≤42 responsive channels, and erroneously excluded ≤2.5 (median) unresponsive channels at all responsiveness levels. On real CCEP data, signal quality was quantified with the mean R2 between all pairs of channels, which represents inter-channel dependency and is low for well-referenced data. CARLA re-referencing produced significantly lower mean R2 than standard CAR, CAR using a fixed bottom quartile of channels by covariance, and no re-referencing. CARLA minimizes bias in re-referenced CCEP data by adaptively selecting the optimal subset of non-responsive channels. It showed high specificity and sensitivity on simulated CCEP data and lowered inter-channel dependency compared to CAR on real CCEP data.

5.
J Clin Neurol ; 20(3): 241-255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713075

RESUMO

Single-pulse magnetic stimulation is the simplest type of transcranial magnetic stimulation (TMS). Muscle action potentials induced by applying TMS over the primary motor cortex are recorded with surface electromyography electrodes, and they are called motor-evoked potentials (MEPs). The amplitude and latency of MEPs are used for various analyses in clinical practice and research. The most commonly used parameter is the central motor conduction time (CMCT), which is measured using motor cortical and spinal nerve stimulation. In addition, stimulation at the foramen magnum or the conus medullaris can be combined with conventional CMCT measurements to evaluate various conduction parameters in the corticospinal tract more precisely, including the cortical-brainstem conduction time, brainstem-root conduction time, cortical-conus motor conduction time, and cauda equina conduction time. The cortical silent period is also a useful parameter for evaluating cortical excitability. Single-pulse magnetic stimulation is further used to analyze not only the central nervous system but also the peripheral nervous system, such as for detecting lesions in the proximal parts of peripheral nerves. In this review article we introduce four types of single-pulse magnetic stimulation-of the motor cortex, spinal nerve, foramen magnum, and conus medullaris-that are useful for the diagnosis, elucidation of pathophysiology, and evaluation of clinical conditions and therapeutic effects. Single-pulse magnetic stimulation is a clinically useful technique that all neurologists should learn.

6.
Malays J Med Sci ; 31(2): 62-71, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38694577

RESUMO

Background: Auditory brainstem response (ABR) to the level-specific (LS) CE-Chirp has been reported to provide optimum neural synchrony along cochlear partitions, theoretically improving ABR waveform resolution. Despite this promising finding, limited studies have been conducted to contrast the results between LS CE-Chirp and Click stimuli. The current study aimed to compare the results of ABR between the two stimuli (Click and LS CE-Chirp). Method: Sixty-seven normal-hearing infants, both with and without risk factors, aged less than 7 months old, participated in this study. The ABR test was conducted at 70 dBnHL using 33.3 stimulus repetition rates with both Click and LS CE-Chirp stimuli. The signal averaging was stopped at a maximum fixed signal average of 2,500 sweeps. Data were statistically compared between the two stimuli using the Wilcoxon signed-rank test. Results: The waves I and V ABRs elicited by LS CE-Chirp exhibited significantly larger amplitudes than the Click stimulus. However, the amplitude of wave III and absolute latencies were similar in both stimuli at a supra-threshold level. Conclusion: LS CE-Chirp has the advantage of larger amplitudes than the ABR from Click at the supra-threshold level (70 dBnHL) in normal-hearing infants.

7.
Cureus ; 16(4): e57993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38738130

RESUMO

Bickerstaff brainstem encephalitis (BBE) is a rare disorder that is characterized by ophthalmoplegia, ataxia, and disturbance in consciousness. Definite diagnosis is made primarily through clinical presentation and serology testing with anti-GQ1b antibody. However, in a country where access to serologic testing is scarce, electrophysiologic tests such as brainstem auditory evoked response (BAER) may contribute to the diagnosis. Due to its rarity and generally good prognosis, there is no established consensus for the treatment of BBE. Immunomodulatory treatments such as intravenous immunoglobulin (IVIG), plasma exchange, steroids, or a combination of these therapies are often used with good response. However, there are severe cases that respond poorly to these conventional treatments. We report the case of a 26-year-old Filipino man who came in for sudden onset of diplopia, with a one-week history of upper respiratory tract infection. Subsequently, he developed paresthesias, quadriparesis, and an altered level of consciousness. On initial examination, he only had partial third nerve palsy, but eventually became quadriparetic and obtunded during admission. Initial electromyography and nerve conduction velocity (EMG-NCV) study showed a reduced recruitment pattern of the right rectus femoris, absent H reflexes of bilateral posterior tibial nerves, and no abnormal increase in temporal dispersion. Cranial MRI with contrast was unremarkable. Video electroencephalogram (video-EEG) showed intermittent generalized 5-6 Hz and 6-7 Hz theta slowing of the background activity in the stimulated state. BAER was done revealing bilateral partial dysfunction of the auditory pathways to support brainstem involvement of the disease. He received IVIG and methylprednisolone pulse therapy with no significant clinical improvement. Hence, he was given a rituximab infusion. One week post-rituximab, he had sustained wakefulness and was able to move his extremities.

8.
Brain Res ; : 148995, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735427

RESUMO

Although the focal brain cooling technique is widely used to examine brain function, the effects of cortical temperature at various levels on sensory information processing and neural mechanisms remain underexplored. To elucidate the mechanisms of temperature modulation in somatosensory processing, this study aimed to examine how P1 and N1 deflections of somatosensory evoked potentials (SEPs) depend on cortical temperature and how excitatory and inhibitory inputs contribute to this temperature dependency. SEPs were generated through electrical stimulation of the contralateral forepaw in anesthetized rats. The SEPs were recorded while cortical temperatures were altered between 17-38 °C either without any antagonists, with a gamma-aminobutyric acid type A (GABAA) receptor antagonist (gabazine), with aminomethylphosphonic acid (AMPA) receptor antagonist (NBQX), or with N-Methyl-D-aspartic acid (NMDA) receptor antagonist ([R]-CPP). The effects of different gabazine concentrations (0, 1, and 10 µM) were examined in the 35-38 °C range. The P1/N1 amplitudes and their peak-to-peak differences plotted against cortical temperature showed an inverted U relationship with a maximum at approximately 27.5 °C when no antagonists were administered. The negative correlation between these amplitudes and temperatures of ≥ 27.5 °C plateaued after gabazine administration, which occurred progressively as the gabazine concentration increased. In contrast, the correlation remained negative after the administration of NBQX and (R)-CPP. These results suggest that GABAergic inhibitory inputs contribute to the negative correlation between SEP amplitude and cortical temperature around the physiological cortical temperature.

9.
Neurotherapeutics ; 21(3): e00356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38608373

RESUMO

Deep brain stimulation (DBS) is an established therapeutic tool for the treatment of Parkinson's disease (PD). The mechanisms of DBS for PD are likely rooted in modulation of the subthalamo-pallidal network. However, it can be difficult to electrophysiologically interrogate that network in human patients. The recent identification of large amplitude evoked potential (EP) oscillations from DBS in the subthalamic nucleus (STN) or globus pallidus internus (GPi) are providing new scientific opportunities to expand understanding of human basal ganglia network activity. In turn, the goal of this review is to provide a summary of DBS-induced EPs in the basal ganglia and attempt to explain various components of the EP waveforms from their likely network origins. Our analyses suggest that DBS-induced antidromic activation of globus pallidus externus (GPe) is a key driver of these oscillatory EPs, independent of stimulation location (i.e. STN or GPi). This suggests a potentially more important role for GPe in the mechanisms of DBS for PD than typically assumed. And from a practical perspective, DBS EPs are poised to become clinically useful electrophysiological biomarker signals for verification of DBS target engagement.


Assuntos
Gânglios da Base , Estimulação Encefálica Profunda , Potenciais Evocados , Doença de Parkinson , Estimulação Encefálica Profunda/métodos , Humanos , Gânglios da Base/fisiologia , Gânglios da Base/fisiopatologia , Potenciais Evocados/fisiologia , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Animais , Globo Pálido/fisiologia , Núcleo Subtalâmico/fisiologia
10.
Spine J ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679075

RESUMO

BACKGROUND CONTEXT: The primary treatment method for intramedullary spinal cord tumor (IMSCT) is surgical resection, but this procedure carries a significant risk of neurological damage. Intraoperative neurophysiological monitoring (IONM) has become a necessary adjunctive tool for IMSCT resection. PURPOSE: The current study aimed to explore the application value of D-wave monitoring in IMSCT surgery, and tried to investigate a tailored criterion for its early warning. STUDY DESIGN: A retrospective clinical study. PATIENT SAMPLE: A retrospective analysis was conducted based on the data of patients who underwent IMSCT surgeries performed by the same neurosurgical team at our hospital. IONM was applied in all surgeries. According to inclusion and exclusion criteria, ultimately 90 patients were enrolled in the study. OUTCOME MEASURES: The McCormick Scale (MMS) was applied to assess the functional outcome through outpatient visits or telephone follow-up at one month and six months postoperatively. Patients with an MMS grade over II one month after surgery were considered to have newly developed postoperative motor dysfunction (PMD). If the MMS grade could be restored to I or II six months after surgery, it was defined as a short-term PMD. Otherwise, it was defined as a long-term PMD. METHODS: The predictive value of different IONM modalities, including somatosensory evoked potential (SEP), muscle motor evoked potential (MEP), and D-wave for PMD, was assessed with sensitivity, specificity, positive predictive value, negative predictive value, and subsequent logistic regression analysis. At last, the cut-off value of the D-wave amplitude reduction ratio for predicting PMD was obtained through the receiver operating characteristic (ROC) curve analysis. RESULTS: SEP showed the worst performance in predicting short-term and long-term PMD. Significant MEP changes were indicated as an independent predictive factor for short-term PMD (OR 5.062, 95% CI 1.947-13.166, p=.001), while D-wave changes were demonstrated as an independent predictor for long-term PMD (OR 339.433, 95% CI 11.337-10770.311, p=.001). The optimum cut-off value of the D-wave amplitude reduction ratio for predicting long-term PMD was 42.18%, with a sensitivity of 100% and a specificity of 93.8% (AUC=0.981, p<.001). CONCLUSIONS: D-wave monitoring showed extremely high specificity in predicting PMD compared to SEP and MEP monitoring. Moreover, the authors suggested that a D-wave amplitude reduction of over 40% during IMSCT surgery generally indicates long-term PMD for patients.

11.
Spine J ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685276

RESUMO

BACKGROUND CONTEXT: Transcranial Motor Evoked Potentials (TcMEPs) can improve intraoperative detection of femoral plexus and nerve root injury during lumbosacral spine surgery. However, even under ideal conditions, TcMEPs are not completely free of false-positive alerts due to the immobilizing effect of general anesthetics, especially in the proximal musculature. The application of transcutaneous stimulation to activate ventral nerve roots directly at the level of the conus medularis (bypassing the brain and spinal cord) has emerged as a method to potentially monitor the motor component of the femoral plexus and lumbosacral nerves free from the blunting effects of general anesthesia. PURPOSE: To evaluate the reliability and efficacy of transabdominal motor evoked potentials (TaMEPs) compared to TcMEPs during lumbosacral spine procedures. DESIGN: We present the findings of a single-center 12-month retrospective experience of all lumbosacral spine surgeries utilizing multimodality intraoperative neuromonitoring (IONM) consisting of TcMEPs, TaMEPs, somatosensory evoked potentials (SSEPs), electromyography (EMG), and electroencephalography. PATIENT SAMPLE: Two hundred and twenty patients having one, or a combination of lumbosacral spine procedures, including anterior lumbar interbody fusion (ALIF), lateral lumbar interbody fusion (LLIF), posterior spinal fusion (PSF), and/or transforaminal lumbar interbody fusion (TLIF). OUTCOME MEASURES: Intraoperative neuromonitoring data was correlated to immediate post-operative neurologic examinations and chart review. METHODS: Baseline reliability, false positive rate, true positive rate, false negative rate, area under the curve at baseline and at alerts, and detection of pre-operative deficits of TcMEPs and TaMEPs were compared and analyzed for statistical significance. The relationship between transcutaneous stimulation voltage level and patient BMI was also examined. RESULTS: TaMEPs were significantly more reliable than TcMEPs in all muscles except abductor hallucis. Of the 27 false positive alerts, 24 were TcMEPs alone, and 3 were TaMEPs alone. Of the 19 true positives, none were detected by TcMEPs alone, 3 were detected by TaMEPs alone (TcMEPs were not present), and the remaining 16 true positives involved TaMEPs and TcMEPs. TaMEPs had a significantly larger area under the curve (AUC) at baseline than TcMEPs in all muscles except abductor hallucis. The percent decrease in TcMEP and TaMEP AUC during LLIF alerts was not significantly different. Both TcMEPs and TaMEPs reflected three pre-existing motor deficits. Patient BMI and TaMEP stimulation intensity were found to be moderately positively correlated. CONCLUSIONS: These findings demonstrate the high reliability and predictability of TaMEPs and the potential added value when TaMEPs are incorporated into multimodality IONM during lumbosacral spine surgery.

12.
J Neural Eng ; 21(3)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38639058

RESUMO

Objective.Brain-computer interface (BCI) systems with large directly accessible instruction sets are one of the difficulties in BCI research. Research to achieve high target resolution (⩾100) has not yet entered a rapid development stage, which contradicts the application requirements. Steady-state visual evoked potential (SSVEP) based BCIs have an advantage in terms of the number of targets, but the competitive mechanism between the target stimulus and its neighboring stimuli is a key challenge that prevents the target resolution from being improved significantly.Approach.In this paper, we reverse the competitive mechanism and propose a frequency spatial multiplexing method to produce more targets with limited frequencies. In the proposed paradigm, we replicated each flicker stimulus as a 2 × 2 matrix and arrange the matrices of all frequencies in a tiled fashion to form the interaction interface. With different arrangements, we designed and tested three example paradigms with different layouts. Further we designed a graph neural network that distinguishes between targets of the same frequency by recognizing the different electroencephalography (EEG) response distribution patterns evoked by each target and its neighboring targets.Main results.Extensive experiment studies employing eleven subjects have been performed to verify the validity of the proposed method. The average classification accuracies in the offline validation experiments for the three paradigms are 89.16%, 91.38%, and 87.90%, with information transfer rates (ITR) of 51.66, 53.96, and 50.55 bits/min, respectively.Significance.This study utilized the positional relationship between stimuli and did not circumvent the competing response problem. Therefore, other state-of-the-art methods focusing on enhancing the efficiency of SSVEP detection can be used as a basis for the present method to achieve very promising improvements.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Potenciais Evocados Visuais , Estimulação Luminosa , Humanos , Potenciais Evocados Visuais/fisiologia , Eletroencefalografia/métodos , Masculino , Estimulação Luminosa/métodos , Feminino , Adulto , Adulto Jovem , Algoritmos
13.
Cureus ; 16(3): e56303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38629017

RESUMO

We report a case involving a 31-year-old male without any known precipitating injuries presenting with involuntary finger movements and rare seizures. There was a noted family history of tremulous movements. Yet the characteristics of his finger movements were irregular and not typical of essential tremor (ET). Electrophysiological examinations, including video EEG, showed no epileptic discharges, and brain MRI results were normal. However, somatosensory evoked potentials (SEP) revealed the presence of giant SEP, and a positive cortical (C)-reflex was observed, leading to a clinical diagnosis of benign adult familial myoclonus epilepsy (BAFME). Management with valproic acid and perampanel resulted in a significant reduction of symptoms. This case highlights the necessity of considering BAFME in the differential diagnosis for atypical tremorous finger movements, especially with a relevant family history, and the critical role of electrophysiological findings indicative of cortical hyperexcitability.

14.
J Neurosci Methods ; : 110130, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653381

RESUMO

BACKGROUND: Cortico-cortical evoked potentials (CCEPs) are a common tool for probing effective connectivity in intracranial human electrophysiology. As with all human electrophysiology data, CCEP data are highly susceptible to noise. To address noise, filters and re-referencing are often applied to CCEP data, but different processing strategies are used from study to study. NEW METHOD: We systematically compare how common average re-referencing and filtering CCEP data impacts quantification. RESULTS: We show that common average re-referencing and filters, particularly filters that cut out more frequencies, can significantly impact the quantification of CCEP magnitude and morphology. We identify that high cutoff high pass filters (> 0.5Hz), low cutoff low pass filters (< 200Hz), and common average re-referencing impact quantification across subjects. However, we also demonstrate that the presence of noise may impact CCEP quantification, and preprocessing is necessary to mitigate this. We show that filtering is more effective than re-referencing or averaging across trials for reducing most common types of noise. COMPARISON WITH EXISTING METHODS: These results suggest that existing CCEP processing methods must be applied with care to maximize noise reduction and minimize changes to the data. We do not test every available processing strategy; rather we demonstrate that processing can influence the results of CCEP studies. We emphasize the importance of reporting all processing methods, particularly re-referencing methods. CONCLUSIONS: We propose a general framework for choosing an appropriate processing pipeline for CCEP data, taking into consideration the noise levels of a specific dataset. We suggest that minimal gentle filtering is preferable.

15.
PeerJ ; 12: e17104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680894

RESUMO

Advancements in cochlear implants (CIs) have led to a significant increase in bilateral CI users, especially among children. Yet, most bilateral CI users do not fully achieve the intended binaural benefit due to potential limitations in signal processing and/or surgical implant positioning. One crucial auditory cue that normal hearing (NH) listeners can benefit from is the interaural time difference (ITD), i.e., the time difference between the arrival of a sound at two ears. The ITD sensitivity is thought to be heavily relying on the effective utilization of temporal fine structure (very rapid oscillations in sound). Unfortunately, most current CIs do not transmit such true fine structure. Nevertheless, bilateral CI users have demonstrated sensitivity to ITD cues delivered through envelope or interaural pulse time differences, i.e., the time gap between the pulses delivered to the two implants. However, their ITD sensitivity is significantly poorer compared to NH individuals, and it further degrades at higher CI stimulation rates, especially when the rate exceeds 300 pulse per second. The overall purpose of this research thread is to improve spatial hearing abilities in bilateral CI users. This study aims to develop electroencephalography (EEG) paradigms that can be used with clinical settings to assess and optimize the delivery of ITD cues, which are crucial for spatial hearing in everyday life. The research objective of this article was to determine the effect of CI stimulation pulse rate on the ITD sensitivity, and to characterize the rate-dependent degradation in ITD perception using EEG measures. To develop protocols for bilateral CI studies, EEG responses were obtained from NH listeners using sinusoidal-amplitude-modulated (SAM) tones and filtered clicks with changes in either fine structure ITD (ITDFS) or envelope ITD (ITDENV). Multiple EEG responses were analyzed, which included the subcortical auditory steady-state responses (ASSRs) and cortical auditory evoked potentials (CAEPs) elicited by stimuli onset, offset, and changes. Results indicated that acoustic change complex (ACC) responses elicited by ITDENV changes were significantly smaller or absent compared to those elicited by ITDFS changes. The ACC morphologies evoked by ITDFS changes were similar to onset and offset CAEPs, although the peak latencies were longest for ACC responses and shortest for offset CAEPs. The high-frequency stimuli clearly elicited subcortical ASSRs, but smaller than those evoked by lower carrier frequency SAM tones. The 40-Hz ASSRs decreased with increasing carrier frequencies. Filtered clicks elicited larger ASSRs compared to high-frequency SAM tones, with the order being 40 > 160 > 80> 320 Hz ASSR for both stimulus types. Wavelet analysis revealed a clear interaction between detectable transient CAEPs and 40-Hz ASSRs in the time-frequency domain for SAM tones with a low carrier frequency.


Assuntos
Implantes Cocleares , Sinais (Psicologia) , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Estimulação Acústica/métodos , Localização de Som/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Fatores de Tempo
16.
J Neurosci Methods ; 406: 110132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604523

RESUMO

BACKGROUND: Traditional therapist-based rehabilitation training for patients with movement impairment is laborious and expensive. In order to reduce the cost and improve the treatment effect of rehabilitation, many methods based on human-computer interaction (HCI) technology have been proposed, such as robot-assisted therapy and functional electrical stimulation (FES). However, due to the lack of active participation of brain, these methods have limited effects on the promotion of damaged nerve remodeling. NEW METHOD: Based on the neurofeedback training provided by the combination of brain-computer interface (BCI) and exoskeleton, this paper proposes a multimodal brain-controlled active rehabilitation system to help improve limb function. The joint control mode of steady-state visual evoked potential (SSVEP) and motor imagery (MI) is adopted to achieve self-paced control and thus maximize the degree of brain involvement, and a requirement selection function based on SSVEP design is added to facilitate communication with aphasia patients. COMPARISON WITH EXISTING METHODS: In addition, the Transformer is introduced as the MI decoder in the asynchronous online BCI to improve the global perception of electroencephalogram (EEG) signals and maintain the sensitivity and efficiency of the system. RESULTS: In two multi-task online experiments for left hand, right hand, foot and idle states, subject achieves 91.25% and 92.50% best accuracy, respectively. CONCLUSION: Compared with previous studies, this paper aims to establish a high-performance and low-latency brain-controlled rehabilitation system, and provide an independent and autonomous control mode of the brain, so as to improve the effect of neural remodeling. The performance of the proposed method is evaluated through offline and online experiments.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Exoesqueleto Energizado , Neurorretroalimentação , Humanos , Eletroencefalografia/métodos , Masculino , Neurorretroalimentação/métodos , Neurorretroalimentação/instrumentação , Potenciais Evocados Visuais/fisiologia , Adulto , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Feminino , Adulto Jovem , Imaginação/fisiologia , Imagens, Psicoterapia/métodos
17.
Front Hum Neurosci ; 18: 1388049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660011

RESUMO

This study examined brain functional connectivity (FC) changes associated with possible anomalous interactions between sensorily isolated monozygotic (MZ) twins. Brain FC was estimated using the Steady State Visual Evoked Potential-Event Related Partial Coherence (SSVEP-ERPC) methodology. Five twin pairs served twice as participants, with an average interval between sessions of 67 days. In each recording session, one twin, the Sender, viewed a randomized set of 50 general images and 50 personally relevant images, while the other twin, the Receiver, viewed a static personally relevant image for the entire duration of the session. Images appeared on the Sender screen for 1.0 s, with the interval between successive images varied randomly between 4.0 and 8.0 s. Receiver FC changes were calculated based on the appearance times of the images as viewed by the Sender. It was hypothesized that anomalous interactions would be indicated by statistically significant Receiver FC changes when those changes are determined using the Sender image appearance times. For each twin serving as Receiver, FC components were separately analyzed for the 50 general and the 50 personal images, yielding 38 observations (19 twin pairs by 2 conditions). The hypothesis was confirmed in that 11 of the 38 observations yielded statistically significant Receiver FC increases or decreases at the p < 0.01 level only when trials were synchronized to the Sender image appearance times. Overall, this effect was significant at the p = 4 × 10-8 Df = 175. To the best of our knowledge, this is the first study reporting statistically significant FC changes indicative of anomalous interactions between two sensorily isolated individuals.

18.
Brain Behav ; 14(4): e3493, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38641893

RESUMO

INTRODUCTION: Generalized joint hypermobility (GJH) can be the result of several hereditary connective tissue disorders, especially Ehlers-Danlos syndrome. Cerebrovascular manifestations are among the most common complications in this disorder, and understanding their extent can help better diagnosis and prevention of hazardous events. We investigated visual evoked potential (VEP) changes in patients with GJH and compared them with healthy individuals. METHODS: Our case-control study included 90 patients who fulfilled the Beighton score (B score) for joint hypermobility and other 90 healthy participants. All of them went under VEP study, and the amplitude and latency of the evoked potential (P100) were compared to each other. RESULTS: The Case group had significantly higher B score (7.18 ± 0.967 vs. 1.18 ± 0.712), P100 latency (110.23 ± 6.64 ms vs. 100.18 ± 4.273 ms), and amplitude (6.54 ± 1.26 mv vs. 6.50 ± 1.29 mv) compared with the Control group, but the difference was only significant regarding B score, and P100 latency (p-value <.0001). Moreover, both latency and amplitude of P100 had significantly positive correlations with the B score in the Case group (p-value <.0001), but such correlations were not found in the Control group (p-value = .059). CONCLUSION: Our study could reveal VEP changes, especially significant P100 latency in GJH patients without previous neurologic or musculoskeletal disorders. Whether these changes are due to GJH itself or are predictive of inevitable neurologic disease or visual pathway involvement, particularly Multiple Sclerosis needs further investigation with longer follow-up periods.


Assuntos
Síndrome de Ehlers-Danlos , Instabilidade Articular , Humanos , Potenciais Evocados Visuais , Instabilidade Articular/diagnóstico , Estudos de Casos e Controles , Potenciais Evocados
19.
Clin Neurophysiol ; 162: 165-173, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38642482

RESUMO

OBJECTIVE: The current study examined the efficacy of the facial corticobulbar motor evoked potentials (FCoMEPs) and blink reflex (BR) on predicting postoperative facial nerve function during cerebellopontine angle (CPA) tumor surgery. METHODS: Data from 110 patients who underwent CPA tumor resection with intraoperative FCoMEPs and BR monitoring were retrospectively reviewed. The association between the amplitude reduction ratios of FCoMEPs and BR at the end of surgery and postoperative facial nerve function was determined. Subsequently, the optimal threshold of FCoMEPs and BR for predicting postoperative facial nerve dysfunction were determined by receiver operating characteristic curve analysis. RESULTS: Valid BR was record in 103 of 110 patients, whereas only 43 patients successfully recorded FCoMEP in orbicularis oculi muscle. A reduction over 50.3% in FCoMEP (O. oris) amplitude was identified as a predictor of postoperative facial nerve dysfunction (sensitivity, 77.1%; specificity, 83.6%). BR was another independent predictor of postoperative facial nerve deficit with excellent predictive performance, especially eyelid closure function. Its optimal cut-off value for predicting long-term postoperative eyelid closure dysfunction was was 51.0% (sensitivity, 94.4%; specificity, 94.4%). CONCLUSIONS: BR can compensate for the deficiencies of the FCoMEPs. The combination of BR and FCoMEPs can be used in CPA tumor surgery. SIGNIFICANCE: The study first proposed an optimal cut-off value of BR amplitude deterioration (50.0%) for predicting postoperative eyelid closure deficits in patients undergoing CPA tumor surgery.

20.
J Voice ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631941

RESUMO

OBJECTIVE: This study explored electrophysiological changes in the laryngeal motor neuropathway and determined whether lesions in the laryngeal motor cortex (LMC) and its descending tract contribute to voice deterioration and peripheral nerve palsy in patients with nasopharyngeal carcinoma (NPC) postradiotherapy (RT). STUDY DESIGNS: Prospective cohort study. METHODS: Twenty-two patients with NPC at 2 to 4years post-RT (8 female and 14 male), 22 patients with NPC at 8 to 10years post-RT (8 female and 14 male), and 22 healthy individuals (9 female and 13 male) were selected to test their magnetic evoked potentials (MEP), motor nerve conduction, and voice quality using transcranial magnetic stimulation, laryngeal electromyography, and the XION DiVAS acoustic analysis software. Three groups were matched according to approximate age. Multiple comparisons were performed among the three groups. RESULTS: The voice quality of post-RT patients with NPC deteriorated compared to that of healthy individuals. Bilateral LMC and their corticonuclear tracts to the bilateral ambiguous nuclei of post-RT patients with NPC were impaired according to multigroup comparisons of MEP amplitudes, latencies, and resting motor thresholds. The vagus and recurrent laryngeal nerves (RLN) of post-RT patients with NPC were impaired according to multigroup comparisons of the amplitude and latencies of the compound muscle action potential and latencies of f-waves. CONCLUSIONS: The voice quality of patients with NPC deteriorated after RT. The pathogenesis of post-RT voice deterioration may involve radiation-induced injuries to the vagus, RLN, and bilateral LMC. Furthermore, radiation-induced injuries to the bilateral LMC may contribute to vagus and RLN palsies. These findings support the use of transcranial approaches to treating voice disorders and peripheral nerve palsies in post-RT patients with NPC. TRIAL REGISTRATION: ChiCTR2100054425; Electrophysiological Study of Vocal-Fold Mobility Disorders After Radiotherapy for NPC Patients via Magnetic Evoked Potential and Their Correlation with Voice Quality Assessment; https://www.chictr.org.cn/bin/project/edit?pid=144429.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...